第一章 附圖

圖 1.1 聲音波形圖

圖 1.2 圖片與照片

(a) 圖片

(b) 照片

圖 1.3 系統的方塊圖
圖 1.4 連續時間訊號

![連續時間訊號](image1)

圖 1.5 離散時間訊號

![離散時間訊號](image2)

圖 1.6 二值訊號的波形

(a) 用開關電路產生的二值訊號的波形

![二值訊號](image3)
(b) 二值訊號的雙極波形

圖 1.7 連續時間的偶訊號與奇訊號

(a) 偶訊號

(b) 奇訊號

圖 1-8 訊號的分解

(a) 實數離散時間訊號

(b) 偶訊號成分
(c) 奇訊號成分

圖 1-9 週期性的連續時間訊號

圖 1-10 週期性的離散時間訊號
圖 1-11 隨機訊號

圖 1-12 振幅調變

(a) 訊息訊號 \(m(t) = \sin(t + 0.6) \)

(b) 載波訊號 \(c(t) = \cos(\omega t) \)
振幅調變之後的波形 $f_{AM}(t) = m(t) \cos(\omega t)$

圖 1-13 以視窗截取訊號

(a) 原始訊號

(b) 視窗訊號
圖 1-14 連續時間訊號的時間比例調整

(a) 原始訊號 \(x(t) \)

(b) 時間比例調整後的訊號 \(y(t) = x(2t) \)
圖1-15 離散時間訊號的時間比例調整

(a) 原始訊號 $x[n]$

(b) 跳選之後的訊號

(b) 時間比例調整後的訊號 $y[n] = x[2n]$
圖 1-16 訊號的時間偏移

(a) 原始訊號 $x(t)$

(b) 偏移後的訊號 $y(t) = x(t - 3)$

圖 1-17 正確的時間偏移與比例調整

(a) 原始訊號 $x(t)$
(b) 先做時間偏移 $v(t) = x(t - 3)$

(c) 再作時間比例調整 $y(t) = v(2t) = x(2t - 3)$

圖 1-18 不正確的時間偏移與比例調整

(a) 原始訊號 $x(t)$
(b) 先作時間比例調整 $v(t) = x(2t)$

(c) 再做時間偏移 $y(t) = v(t - 3) = x(2t - 6)$

圖 1-19 離散時間訊號的偏移與比例調整

(a) 原始訊號 $x[n]$
(b) 先做時間偏移 \(v[n] = x[n-12] \)

(c) 再作時間比例調整 \(y[n] = v[2n] = x[2n-12] \)

圖 1-20 RC 電路上的指數訊號

(a) RC 電路
(b) 電容電壓的波形

圖 1-21 連續時間的弦波訊號

圖 1-22 離散時間的弦波訊號
圖 1-23 RLC 電路中的指數衰減弦波訊號

(a) RLC 電路

(b) 電流波形

圖 1-24 連繭時間的步進函數及其時間偏移

(a) 單位步進函數
(b) 單位步進函數的時間偏移

圖 1-25 具有切換開關的 RC 電路

(a) RC 電路

(b) 電容上的電壓訊號
圖1-26 連續時間的矩形脈波

(a) 步進函數

(b) 時間位移之後的步進函數

(c) 矩形脈波
圖 1-27 離散時間的矩形脈波

(a) 步進函數

(b) 時間位移之後的步進函數

(c) 矩形脈波
圖 1-28 連續時間單位脈衝函數的表示方法

![連續時間單位脈衝函數的表示方法](image1)

圖 1-29 逼近單位脈衝函數的方法

![逼近單位脈衝函數的方法](image2)

圖 1-30 離散時間的單位脈衝

![離散時間的單位脈衝](image3)
圖 1-31 連續時間單位脈衝函數的微分

圖 1-32 連續時間單位上升函數

圖 1-33 離散時間單位上升函數
圖 1-34 系統的方塊圖表示

\[x(t) \rightarrow H(t) \rightarrow y(t) \]

圖 1-35 兩個系統之串聯

\[x(t) \rightarrow H_1(t) \rightarrow H_2(t) \rightarrow y(t) \]

圖 1-36 兩個系統之並聯

\[x(t) \rightarrow H_1(t) \rightarrow H_2(t) \rightarrow y(t) \]

圖 1-37 系統的串並聯混合

\[x(t) \rightarrow H_1(t) \rightarrow H_2(t) \rightarrow y(t) \]