Decomposition of benzene in the RF plasma environment
Part I. Formation of gaseous products and carbon depositions
Shun-I Shih, Ta-Chang Lin*, Minliang Shih
Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Received 5 February 2004; received in revised form 8 September 2004; accepted 10 September 2004

Abstract
This study employed radio-frequency (RF) plasma for decomposing benzene (C₆H₆) gas, and examined both gaseous products and solid depositions after reaction. The reactants and products were analyzed mainly by using both an on-line Fourier transform infrared (FT-IR) spectrometer and a gas chromatography. The analyses for solid deposition included electron spectroscopy for chemical analysis (ESCA), element analysis and heat value analysis. The C₂H₂, C₂H₄, C₂H₆, CH₄, CO₂ and CO were detected and discussed. The analytical results demonstrate that in the C₆H₆/Ar plasma, C₂H₂ is the sole gaseous product being detected. The fraction of total carbon input converted into C₂H₂ (Y C₂H₂) increased with increasing C₆H₆ feed concentration, but decreased with increasing input power. In the C₆H₆/H₂/Ar system, besides C₂H₂, CH₄, C₂H₄ and C₂H₆ were also detected, and their yields increased with increasing H₂/C₆H₆ ratio. The above results indicated that the addition of H₂ (auxiliary gas) achieves the benefit of creating hydrogen-rich species like CH₄, C₂H₄ and C₂H₆. In the C₆H₆/O₂/Ar system, C₆H₆ could be totally oxidized into CO₂, CO and H₂O, and no measurable phenol was found. Analyses of solid depositions revealed that the carbon depositions were similar to those of Anthracite. The carbon deposition has a heat value of 7000 kcal/kg. Additionally, the possible reaction pathways were also built up and discussed.

Keywords: Radio-frequency, Plasma, Benzene (C₆H₆), Decomposition, Deposition

1. Introduction
Numerous types of plasma can be used to destroy C₆H₆ [1–6]. Non-thermal plasma, which has low energy requirements has been demonstrated to be an effective process for decomposing inorganic or organic air pollutants, leading to high destruction removal efficiencies (DREs). Oxygen and hydroxyl radicals generated in the plasma at a low temperature (293 K) can be used to oxidize hydrocarbons to CO, CO₂ and H₂O. Near complete destruction of C₆H₆ (>99%) was achieved. [4]. Oxygen can be used to help decompose C₆H₆ in the radio-frequency (RF) plasma. This concept was employed by Tenzaka et al. to identify the conversion efficiency from C₆H₆ to phenol [2]. RF plasma was a branch of non-equilibrium plasma, which was frequently termed cold plasma [7]. The kinetic energy of electrons and ions exceeds that of molecules in cold plasma systems. Generally, the temperature of the gas molecule in an RF plasma reactor is near room temperature, while that of electrons in the plasma zone could exceed 10⁷ K [8], depending on the power input and gas species produced. Following the plasma zone, the temperature of the gas molecules was rapidly quenched to below 400 °C [9]. At such high temperature in the plasma zone, the energy of an electron is around 50 kcal/mol, which is twice that of the activation energy of a conventional chemical reaction (25 kcal/mol). Accordingly, conventional reactions, which must be performed at very high temperatures could be completed at lower temperatures in
the RF plasma reactor. Due to the advantage of low operating temperature and high decomposition efficiency, the RF plasma technology can be considered a potential alternative method for treating VOC.

However, when the plasma technology is applied to treat VOC, the problems of by-products indicated by Demidouk et al. [10] may be encountered. These by-products contain CO, aerosol and polymer. Applying plasma for removing aromatic organic compounds may be difficult because of the formation of solid by-products [10]. Generally, in the plasma system with oxygen, the final gaseous products generally simultaneously contain CO$_2$ and CO. The operational parameters could influence the selectivity of CO$_2$ and CO. These processes should be adjusted to suppress the formation of CO, since it is toxic.

When C$_6$H$_6$ is subjected to energetic RF plasma, competition occurs between decomposition and synthesis. From the perspective of mass conservation, C$_6$H$_6$ can be decomposed to yield gaseous products, such as H$_2$, CH$_4$, C$_2$H$_2$, C$_2$H$_4$ and C$_2$H$_6$, or can be synthesized to produce larger aromatics, for example PAHs and soot. Furthermore, C$_6$H$_6$ can be pyrolyzed to carbon black [11,12] or synthesized to larger aromatics (fullerenes) [13] under suitable conditions.

The primary objective of this study is to examine the formation and mechanism of gaseous products during the decomposition of C$_6$H$_6$ gas in the RF plasma. The property of solid depositions was also studied.

2. Experimental

Similar experimental apparatus of plasma system has been described in more detail elsewhere [14]. By applying a vacuum, C$_6$H$_6$ can be easily transformed into the vapor phase. The flow rates of C$_6$H$_6$ gas, H$_2$, O$_2$ and argon were individually metered with calibrated mass flow controllers (Brooks-type 5850E). A total flow rate of 100 sccm (cm3/min, 1 atm, 273 K) entered the mixing vessel and was then introduced into a glass reactor. The operational pressure was always adjusted around 10 Torr before the application of RF plasma. The RF plasma reactor, as illustrated in Fig. 1, is a cylindrical glass vessel, with inner diameter 4.14 cm and total height 20 cm. The outer copper electrode has a height of 6 cm and is wrapped on the plasma reactor and grounded. To achieve steady RF power, the spacing between two electrode sheets was 0.5 cm.

An RF plasma generator (CESAR, Dressler) and a matching network (Dressler, Vario Match) supplied 13.56 MHz power to the reactor. Gas was introduced to the bottom of the reactor flows via glass tubes running into the powered electrode, where it then mixed before flowing into the copper electrode zone. This arrangement ensures that all gas introduced into the reactor flowed through the glow discharge. Before each run, the system was subjected to a vacuum to reduce the pressure to below 0.01 Torr. An oil diffusion pump was then used to further lower the pressure to 0.001 Torr.

The temperature of the electrons in the plasma zone could exceed 103 K, depending on the power input and gas species produced. After plasma zone, the gas flow temperature was rapidly quenched to below 400$^\circ$C. This study calculated the electron temperature in the plasma zone using the computer model; they were 2220, 2280, 2340, 2400 and 2450$^\circ$C for 5, 10, 20, 40 and 60 W, respectively. However, outside the plasma zone, the temperatures at the exit of the plasma reactor were between 200 and 400$^\circ$C, depending on power input. Additionally, the temperatures at the filter for collecting particle-phase PAHs were 57 and 115$^\circ$C using the input power of 40 and 90 W, respectively. The gaseous product species outside the reactor is on-line introduced into a Fourier transform infrared (FT-IR) spectrometer (Nicolet, Avatar 360) with 9.6 m path length gas cell (CIC, Ranger) for species identification and quantification. Calibration for gaseous reactants and product species was conducted by withdrawing unreacted gases and going directly through the sampling line connected to the FT-IR. The species concentrations were calculated by comparing the response factor (absorbance height/concentration) of standard gas at the same FT-IR wavenumber. Table 1 lists the wavenumber of both the absorbance-zone range and absorbance-peak center for C$_6$H$_6$, CH$_4$, C$_2$H$_2$, C$_2$H$_4$, C$_2$H$_6$, CO and CO$_2$.

![Fig. 1. Plasma reactor](image-url)
Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>Wave number of absorbance-peak center (cm(^{-1}))</th>
<th>Wave number of absorbance-zone range (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>C(_6)H(_6)</td>
<td>673</td>
<td>3020–3070, 3080–3120</td>
</tr>
<tr>
<td>Methane</td>
<td>CH(_4)</td>
<td>1304, 1342, 2916, 3012, 3087</td>
<td>1173–1396, 2825–3174</td>
</tr>
<tr>
<td>Acetylene</td>
<td>C(_2)H(_2)</td>
<td>729, 746, 1297, 1350, 3259, 3306</td>
<td>607–3319, 1205–1432, 3158–3371</td>
</tr>
<tr>
<td>Ethane</td>
<td>C(_2)H(_6)</td>
<td>829, 1438, 1470, 2966, 2985</td>
<td>719–938, 1331–1631, 2573–3321</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>CO</td>
<td>2117, 2167</td>
<td>1970–2330</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>CO(_2)</td>
<td>2332, 2355, 3595, 3629, 3701, 3724</td>
<td>2230–2400, 3500–3750</td>
</tr>
</tbody>
</table>

A steady-state was considered to be attained when a relatively constant value of both decomposition fractions and absorbance-peaks of product species on FT-IR was obtained at designed operational parameters, including gas feed concentration, operational pressures (10 Torr), total gas flow rate (100 sccm) and input power. Each experimental run lasted for at least 15 min, and the effluent concentration of individual species was monitored by the FT-IR throughout the reaction. In all of the experiments, the analytical results show that the steady-state conditions were approached in the effluent after roughly 10 min. Notably, the data reported here are based on the mean values measured after a steady-state condition was achieved.

3. Results and discussion

3.1. In C\(_6\)H\(_6\)/Ar plasma

The decomposition fraction of C\(_6\)H\(_6\) (\(\eta_{C_6H_6}\)) in the RF plasma system is defined as: \([\text{influent } C_6H_6 - \text{effluent } C_6H_6] / \text{influent } C_6H_6\) \(\times 100\%\), where \(C_6\)H\(_6\) is the feed concentration. As shown in Fig. 2, at the lower C\(_6\)H\(_6\) (0.4%), lower input power (5 W) could have \(\eta_{C_6H_6}\) of up to 98%, increasing the input power to 10 W can thoroughly destroy C\(_6\)H\(_6\) (\(\eta_{C_6H_6} = 99\%\)). On the other hand, at the higher C\(_6\)H\(_6\) (1.5%), lower input power (5 W) could have \(\eta_{C_6H_6}\) of just 80%, in which case increasing input power to 20 W could result in \(\eta_{C_6H_6}\) of 99%. From Fig. 2, at the lower input power (5–20 W), C\(_2\)H\(_2\) can be easily decomposed at lower C\(_6\)H\(_6\), and the \(\eta_{C_2H_2}\) increases with increasing input power as observed previously. When input power exceeded 20 W, the \(\eta_{C_2H_2}\) can reach 99% at the C\(_6\)H\(_6\) of 0.4–1.5%. The above results implied that higher \(\eta_{C_6H_6}\) diluted the power supplied and reduced the \(\eta_{C_2H_2}\). However, a higher input power generates more energetic electrons thus promoting the reaction and increasing \(\eta_{C_2H_2}\).

Fig. 3 shows the gaseous products during the decomposition of C\(_6\)H\(_6\). Under the specified C\(_6\)H\(_6\) (0.4–1.5%) and RF power (5–60 W), acetylene (C\(_2\)H\(_2\)) is the sole gaseous product. This phenomenon results from the C\(_2\)H\(_2\) being more stable than other hydrocarbons. Regarding the influence of input power on the formation of C\(_2\)H\(_2\), it exhibits good agreement with the results of Ogata et al., where C\(_2\)H\(_2\) concentration decreased with increasing input power [5]. When the input power was raised to 20 W, the total carbon input converted into C\(_2\)H\(_2\) could be negligible. Regarding the influence of C\(_6\)H\(_6\), its formation increases markedly with increasing C\(_6\)H\(_6\) when the input power was below 20 W. Based on the experimental results obtained for the plasma by Ogata et al., a small amount...
of C$_2$H$_2$ (7–20 ppm) was detected [1]. Although the participation of catalyst-like factors, such as oxygen or water, could cause further decomposition of C$_2$H$_2$ and consequently lower production, low C$_6$H$_6$ (200 ppm, equal to 0.02%) could be the main reason for low production in their study. Instead, abundant C$_2$H$_2$ (Fig. 3) were found in this study owing to feeding of approximately 20 times of C$_6$H$_6$ (0.4–1.5%).

Numerous researchers reported that C$_2$H$_2$ was produced from C$_6$H$_6$ [1,5,11,15,16]. The production routes included pyrolysis, oxidation, combustion, sonication and plasma. Such information on C$_2$H$_2$ formation revealed that C$_2$H$_2$ can easily be generated from C$_6$H$_6$. From the thermodynamic analysis of C$_6$H$_6$ pyrolysis by Cataldo [16], acetylene formation from C$_6$H$_6$ ($C_6H_6 \rightarrow 3C_2H_2$) is possible only if C$_6H_6$ is pyrolyzed at very high temperature (1700 °C). Since it is difficult to imagine that such high temperature is reached during C$_6$H$_6$ decomposition in the RF plasma, the alternative explanation is that acetylene is formed along with ‘coke’ via the following reaction: $C_6H_6 \rightarrow C_2H_2 + 4C$ (coke) + 2H$_2$. Meanwhile, naphthalene and other PAHs can be formed if ‘coke’ formation occurs: $2C_6H_6 \rightarrow C_{10}H_8$ (naphthalene) + 2C (coke) + 4H$_2$. In fact, based on the results of this study, simultaneous formation of PAHs (polycyclic aromatic hydrocarbons) and dark yellow-to-brown matter was found upon prolonged decomposition of C$_6$H$_6$ [17]. Although abundant electrons with high energy are generated in the energetic RF plasma environment for introducing reactions, the temperature of the bulk environment of gaseous products remains low. Consequently, decomposition of C$_6$H$_6$ to the sole product, acetylene (C$_2$H$_2$), is impossible. Instead, other products, such as solid depositions, PAHs and H$_2$ must be formed simultaneously through the following two reactions [16]:

$$C_6H_6 \rightarrow C_2H_2 + 4C$$(coke) + 2H$_2$

$$2C_6H_6 \rightarrow C_{10}H_8$(naphthalene) + C$_2H_2$ + H$_2$

3.2. In C$_6$H$_6$/H$_2$/Ar plasma

As shown in Fig. 4, at a lower input power (Fig. 4(A), 20 W), decomposition of C$_6$H$_6$ at a lower C$_6$H$_6$/C$_2$H$_4$ ratio exceeded 98%. Moreover, for a higher C$_6$H$_6$/C$_2$H$_4$ (1.5%), the CO$_2$/H$_2$ decreased with increasing H$_2$/C$_2$H$_4$ ratio. At a higher input power (Fig. 4(B), 40 W), the trends of CO$_2$/H$_2$ closely resembled those in Fig. 4(A) for both 1 and 1.5% of C$_6$H$_6$. Comparing Fig. 4(A) and (B), at lower C$_6$H$_6$/C$_2$H$_4$ (1%) no obvious difference was identified between the trends of CO$_2$/H$_2$ when input power was raised from 20 to 40 W; whereas, at a higher C$_6$H$_6$/C$_2$H$_4$ (1.5%), despite the trends of CO$_2$/H$_2$ being similar, a higher input power can be seen to result in a higher CO$_2$/H$_2$. Regarding the influence of C$_6$H$_6$ on its CO$_2$/H$_2$, as indicated in the previous section, a lower C$_6$H$_6$/C$_2$H$_4$ (1%) created a higher CO$_2$/H$_2$, for Fig. 4(A) and (B), respectively. The decomposition of C$_6$H$_6$ is related to the reaction of H-abstraction. Thus, H$_2$ addition hindered the reaction of H-abstraction, then decreasing the CO$_2$/H$_2$. On the other hand, increasing C$_6$H$_6$/C$_2$H$_4$ decreased CO$_2$/H$_2$. CO$_2$/H$_2$ decreased because the power applied on each C$_6$H$_6$ molecule reduced with increasing number of C$_6$H$_6$ molecules being fed. It can be summarized that the operational conditions for obtaining an improved CO$_2$/H$_2$ in the C$_6$H$_6$/H$_2$/Ar plasma would be low C$_6$H$_6$, high input power and low H$_2$/C$_2$H$_4$ ratio.

Regarding the formation of gaseous products, besides C$_2$H$_2$; this study also found that CH$_4$, C$_2$H$_4$ and C$_2$H$_6$ were obtained in the C$_6$H$_6$/H$_2$/Ar plasma (Fig. 5(A) and (B)). As to the molecular structures, the H/C ratio (molar ratio) of CH$_4$, C$_2$H$_4$ and C$_2$H$_6$ each exceeded that of C$_2$H$_2$, which was the sole species in the C$_6$H$_6$/Ar system, meaning that addition of hydrogen can enhance the formation of hydrogen-rich species. Furthermore, as illustrated in Fig. 5(A) and (B), high H/C ratio species (CH$_4$ and C$_2$H$_4$) dominated relatively low H/C ratio species (C$_2$H$_2$ and C$_2$H$_6$). Generally, the total
carbon input converted into gaseous products (Y_{gas}) increased with increasing H_2/C_6H_6 ratio. Moreover, the growing speed with various H_2/C_6H_6 ratios for CH$_4$ and C$_2$H$_6$ also exceeded that for C$_2$H$_2$ and C$_2$H$_4$. All the above results revealed and strengthened the fact that hydrogen addition favors the formation of hydrogen-rich species.

As described in the previous section on the gaseous products (Fig. 3), 20 W of input power can make the $Y_{C_2H_2}$ negligible in the C$_6H_6$/Ar system, where C$_2$H$_2$ is the sole gaseous product. That is, input power exceeding 20 W could completely destroy all the organics at C$_6$H$_6$ below 1.5%. However, this study still found significant amounts of CH$_4$, C$_2$H$_2$, C$_2$H$_4$ and C$_2$H$_6$ in Fig. 5, where C$_6$H$_6$ was 1.5% and the input power was at least 20 W. The possible reason for the above results was that the addition of hydrogen activated these ‘carbon depositions’, then reacted with activated carbons to produce stable hydrocarbons and even hydrogen-rich species in the energetic plasma.

In Fig. 5, C$_2$H$_6$ denotes the most abundant hydrogen-rich hydrocarbon species. The trend of $Y_{C_2H_6}$ resembles those of CH$_4$, C$_2$H$_2$ and C$_2$H$_4$, respectively, which increased with increasing H_2/C_6H_6 ratio. Comparing Fig. 5(A) and (B), based on the same H_2/C_6H_6 ratio, found that $Y_{C_2H_6}$ reduced with increasing input power. High amount of C$_2$H$_6$ formation probably results from the combination of two methyl radical (CH$_3$•), which frequently occurs in the plasma environment since CH$_4$ is also a dominant species following hydrogen addition.

Due to predictions of a future oil shortage, this study mentions that these final gas products (including CH$_4$, C$_2$H$_4$, C$_2$H$_2$ and C$_2$H$_6$) formed in the C$_6$H$_6$/Ar and C$_6$H$_6$/H$_2$/Ar RF plasma systems are worthy of recovery and reuse, and could provide useful alternatives to existing fuels.
3.3. In C₆H₆/O₂/Ar plasma

Fig. 6 clearly shows that, at the input power of 20 W, increasing the O₂/C₆H₆ ratio from 1.0 to 9.0 (1–9% O₂) does not significantly influence the η₇C₆H₆ at C₆H₆ of 1%, and η₇C₆H₆ maintained at 98–99%. This information implies that C₆H₆ with C₆H₆ of 1% can be completely oxidized at input power of 20 W and O₂/C₆H₆ ratio of 1.0. The final products in the C₆H₆/O₂/Ar plasma are CO₂, CO and H₂O. This study cannot find other gaseous products, even phenol, which are frequently found in the combustion process and plasma system with oxygen. This finding displayed good agreement with the results of Kim et al. [18], where decomposed C₆H₆ was mostly converted to CO₂ and CO, and no other organic reaction products were detected from the gas analysis using FT-IR. Regarding combustion, the stoichiometric oxygen for 1% of C₆H₆ was 7.5%. In this RF plasma system, 1% of oxygen at the lower input power of 20 W can achieve the complete decomposition, exhibiting the advantage of this system over the conventional combustion system.

Fig. 7 shows the formation of gaseous products associated with carbon (CO₂ and CO) and carbon depositions in the C₆H₆/O₂/Ar system. When O₂/C₆H₆ ratio were increased, the YCO₂ maintains a constant value of 22%, while the YCO decreases with increasing O₂/C₆H₆ ratio until the stoichiometric point (O₂/C₆H₆ = 7.5) is reached. Subsequently, YCO displayed the opposite trend. Thus, the trend for the formation of carbon depositions exhibited the opposite direction to CO₂.

Fig. 7 clearly shows that YCO₂ always exceed YCO for all O₂/C₆H₆ ratios. This result differs from that of Demidouk et al. [10], where plasma treatment without catalyst increases total gas toxicity due to more toxic CO being formed (the removal efficiency for toluene was 97%, and that for C₆H₆ was 98–99% in this study). Generally, in the combustion process or plasma system with oxygen, the final gaseous products
simultaneously contain CO and CO. The better selection for operational parameters or environments decreases the YCO and decreases the toxicity accordingly. Furthermore, adding the catalysts following plasma reactor could provide the best means of solving the toxicity problem from CO.

3.4. Formation of solid depositions

Examining the gaseous products generated from C6H6/Ar, C6H6/H2/Ar and C6H6/O2/Ar plasmas described above, the total carbon mass on gaseous product was found to be markedly lower than that of input C6H6. Therefore, a significant amount of carbon input was being converted into solid depositions. In accordance with the study results, which are also submitted in part II, a significant amount of PAHs were detected in this RF plasma system [17]. Based on the concept of carbon balance, the fraction of total carbon input converted into carbon depositions was depicted in Fig. 8(A) for the C6H6/Ar system and (B) for the C6H6/H2/Ar system and Fig. 7 (C6H6/O2/Ar system, as previously illustrated). Evidently, from these three illustrations, carbon depositions account for the majority of the decomposed C6H6, particularly for the C6H6/Ar system, where almost all the decomposed C6H6 were converted into carbon depositions (Fig. 8(A) closely resembled Fig. 2). In the C6H6/H2/Ar system, because of the addition of H2, parts of carbon reacted with them to produce gaseous hydrocarbons, then carbon depositions decreased with increasing H2/C6H6 ratio. In the C6H6/O2/Ar
The solid depositions on the internal wall of plasma reactor were collected and analyzed by ESCA (electron spectroscopy for chemical analysis). Two sets of operational parameters were chosen: 10% C6H6, 40 W for C6H6/Ar system and 2% C6H6, 40 W, 1% O2 for C6H6/O2/Ar system. Fig. 9 shows that the fraction of total carbon input converted into solid depositions (Ysolid) accounts for 99.77% in the C6H6/Ar system (Fig. 9(A)) and 99.18% (besides 0.82% of O2) in the C6H6/O2/Ar system (Fig. 9(B)). Peak deconvolution (using Gaussian model) of the carbon spectra was carried out for determining the functional components of the solid deposition. The analytical results show the possible existence of C=C bond (binding energy: 285.65 eV) and C-H bond (binding energy: 286.45 eV) [19–22], and the ratio of C=C bond to C-H bond is approximately 1.4 to 1; whereas, in the C6H6/O2/Ar system, the binding energy for C=C and C-H bond was 285.6 and 286.7 eV, respectively, [19–22], and the ratio was 6.3 to 1.0.

Additionally, element analysis was also conducted at two specified operational conditions: 10% C6H6, 40 W and 2% C6H6, 40 W, 15% O2. In solid deposition, the relative percentages of carbon/hydrogen content were 89.51%/6.57% and 85.53%/6.71%, which represented ratios of 13.6:1 and 12.7:1, respectively. That is, the molar ratios were 1.14 and 1.06, respectively. The above results revealed that carbon depositions account for the major parts of total carbon mass in both C6H6/Ar and C6H6/O2/Ar systems. This result demonstrates good agreement with the results of XPS (ESCA) mentioned previously.

Fig. 8. The carbon depositions during the decomposition of C6H6 in both the C6H6/Ar (A) and C6H6/H2/Ar (B) systems.
The carbon content in solid depositions is the most significant influence on their heat value. The heat value of 7000 kcal/kg for the operational condition of 10% C₆H₆ and 50 W significantly exceeded that of plastics (4000–5000 kcal/kg). Comparing the findings of this study with Table 2, which lists the carbon content and heat value of various coal [23], these ‘carbon depositions’ could be categorized into the rank between Anthracite and Bituminous. Besides being the alternative fuel, these solid by-products should be controlled by employing air pollutant control devices, such as bag house.

Table 2
Carbon content and heat value of various coal [23]

<table>
<thead>
<tr>
<th>Rank of coal</th>
<th>Carbon content (%)</th>
<th>Heat value, BTU/pound (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracite</td>
<td>86–98</td>
<td>15000 (8328)</td>
</tr>
<tr>
<td>Bituminous</td>
<td>45–86</td>
<td>10500–15500 (5830–8606)</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>35–45</td>
<td>8300–13000 (4608–7218)</td>
</tr>
<tr>
<td>Lignite</td>
<td>25–35</td>
<td>4000–8300 (2221–4608)</td>
</tr>
</tbody>
</table>

4. Conclusions

(1) In the C₆H₆/Ar RF plasma system and at lower input power (5–20 W), C₆H₆ can be decomposed more easily at lower input concentration (0.4–1.5%), and \(\eta_{C_6H_6} \) increased with increasing input power; while at a higher input power (above 20 W), \(\eta_{C_6H_6} \) can reach up to 99% at 0.4–1.5% of C₆H₆. Acetylene (C₂H₂) is the only significant gaseous-product being detected in the C₆H₆/Ar RF plasma system. The fraction of total carbon input converted into C₂H₂ (\(Y_{C_2H_2} \)) decreased with increasing input power.

(2) In the C₆H₆/H₂/Ar system, lower C₆H₆, high input power, and lower H₂/C₆H₆ ratio could lead to better decomposition of C₆H₆. Addition of hydrogen could help in forming hydrogen-rich species like CH₄, C₂H₄ and C₂H₆.

(3) In the C₆H₆/O₂/Ar system, the C₆H₆ with 1% of feed concentration mixed with 1% of O₂ can be totally
decomposed at input power of 20 W. The stable products were CO₂, CO and H₂O and no measurable phenol was found.

(4) The total carbon mass on the gaseous product was considerably lower than that of input C₆H₆. Consequently, a significant quantity of carbon input was converted into solid depositions among C₆H₆/Ar, C₆H₆/H₂/Ar and C₆H₆/O₂/Ar systems. Most carbon contents (carbon depositions) were deposited on the reactor internal wall. Particularly for the C₆H₆/Ar system, very little C₆H₆ was pyrolyzed to C₂H₂. In the C₆H₆/H₂/Ar plasma, carbon partially reacted with H₂ to produce hydrogen-rich species, such as CH₄, C₂H₄ and C₂H₆.

(5) The results of ESCA, element analysis, and heat value analysis show that high carbon contents of carbon depositions result in heat values up to 7000 kcal/kg, and these ‘carbon depositions’ could be categorized into the rank between Anthracite and Bituminous.

References

